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Previous studies of nonisothermal flow of rarefied gases in channels have mainly been 
dedicated to monoatomic gases. There are only a few studies in which methods based on use 
of the kinetic equations are employed to describe the flow of a polyatomic gas [I, 2]. Inter- 
est in nonisothermal flow in channels and the thermomolecular pressure difference produced by 
such a flow is due to the possibility of determining the translational component of thermal 
conductivity (the Aiken translation factor), which given experimental data on the total ther- 
mal conductivity of the gas provides an independent source of data on internal energy relaxa- 
tion times, which are usually determined by experiments on ultrasound absorption or other 
methods. In [i] the problem of nonisothermal flow of a polyatomic gas in a planar channel 
was solved using the linearized kinetic equation of Wang-Chang and Uhlenkeck with a third- 
order model collision operation in the Hanson~Morze form. To calculate the dimensionless 
Poisseuille flow, thermocreep flux, and thermal flux in the function for the reciprocal Knud- 
sen number a numerical procedure was used to solve the integral equations obtained from the 
original kinetic equation. The results of numerical calculations for certain special cases 
indicate a quite strongly expressed dependence of the thermomolecular pressure difference ef- 
fect on the translational Aiken factor ft and a weak dependence on total Aiken factor f. In 

the present study we will use the method proposed in [3] and employed previously in [3-5] for 
study of the flow of monoatomic gases and gas mixtures to analyze the flow of a polyatomic 

gas. Although its use must be limited to a range of Knudsen numbers not exceeding 0.25, this 
method has the advantage of permitting use of an exact (not model) collision operator in the 
kinetic equation. Analytical expressions will be obtained for the Poiseuille flow, thermo- 
creep flux, and heat flux of a polyatomic gas in a plane channel, valid for the indicated 
Knudsen number range, and results will be compared with the numerical calculations of [i]. 

We will consider the slow flow of a polyatomic gas in a plane channel~ bounded at x = 
• by two infinite parallel planes. In the z-direction there exist small relative pres- 
sure (k = p[Idp/dz) and temperature (T = T[~dT/dz) gradients. A solution for the molecular 
distribution function can then be sought in the form 

[ ( ) ] fi (v ,  x, s, ~ )  = .ho t + kz + ~z ~,~ - -  -~- + ~i - -  ~ + q~ (v, x, ~)  , 

f~o=no~2nk Byo ] Qo lexp(-]3v 2-e~)~ ~=m/2ksTo. 

(1) 

Here the subscript 0 corresponds to parameters of an absolute ~4axwe!l--Boltzmann distribution 

gi = Ei/kBT~ Ei is the internal energy of molecules located in the i-th quantum state; ~ = 
Qo I ~c. exp(~.); Qo = ~exp(-e ) The nonequilibrium addition to the distribution function 

1 i ~ I l ~ " 

@i(V, x, s i) is determined from the linearized kinetic equation of Wang-Chang and Unlenbeck 
[6] 

~ ( S ) Ux ~ nc Uzk + vat ~r 2-~ @- e i - 8 = (2) 

gc~ (~j/kl,; %) d ~ d v  1 . 3hl 

Multiplying Eq. (2) successively by P(c, er 2 -- ei), where P(c, ei) =_Cr, CrCs -- 

(I/3)C26rs , Cr(C 2 -- 5/2), CresCt- (i/5)c2(Cr~st +Cs~rt + Ct~rs), Cr(~ i -- ~), c = S$=v, 
integrating over velocities and summing over the i-th quantum states, given the planar geom- 
etry of the problem we arrive at moment equations of the form 

# 
p0k + ~ ~ = 0; (3) 
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Tx( 2 t ) 8,,on" mS~x + -3- q~ + Po u~ = -- ---g-- n~z; 

a ( M z x x x - 4 - M z x y y + M z x z z ) + 5  p~ ( k + T )  = 32 no ( 25 ) t t0kBn o Q in 
6~'-x- [30"--~ t5 ~ ~'~l "~- " ~  ~'~E qz -~ 3---/in-- ~ - mqz ; 

(4) 

(5) 

a e cin ( 3kB "~ i in . 3 7 _ M . ~ + ~ . r  = 2 2,-, l_j_ t 8 

a__ (471I . . . .  - -  M,~vv - -  M ~ z )  = - -  1 2 n 0 ~ n s ~ ;  
Ox 

a 

(6) 

(7) 

, o )  

Szxx ~ Szyv -~- Szzz : O. (9) 

The right sides of Eqs. (4)-(6) coincide with the expressions obtained in the 17-moment 
approximation in [7]. The additional moments of the collision integrals appearing in Eqs. 
(7), (8) are obtained upon consideration of yet another polynomial of the form CrCsC t -- 
(i/5)c2(cr6st + Cs6rt + Ct6rs) , the use of which corresponds to a 20-moment approximation, 
the case of single component gases. In Eqs. (3)-(9) u z is the hydrodynamic velocity; Vxz 
is the viscous stress tensor; q~ is the thermal flux produced by translational motion of 
molecules; q~n is the thermal flux produced by internal degrees of molecular freedom. The 
expressions for these moments and for the higher-order moments Srst, M~s , and Mrstk can be 
written in the form 

Ur 

~:rs 

t 
q, 

in 
qT 

mSrst 

mM~s 

mMrsth_ 

= 2po~-l/2~-a/2Qol X y 
i 

- (2po)-1~, - 

( ) ~I/~ CrCs __ + C2~rs 

l 

1 ~(~-~) 
c,c~ct - -  -~ c (c~&t + 

+ c,8~ + ctS,~) 

_ ~--l/2CrCsCtCh _ 

(:I)i exp (-- P --  e~) de. (io) 

The heat capacity c in, corresponding to the internal degrees of freedom, and the integral 
quantities ~E' ~q' 2 D were defined in [7]. 

Far from the walls the system of equations must correspond to the approximation ob- 
tained within the framework of the conventional Grade model, generalized to the case of a 
polyatomic gas in [7, 8]. After linearization with consideration of the smallness of the 

in quantities Uz, ~xz, q~, qz , Srst the distribution function in this region can be written 
in the form 

( l l )  

as ~ t as 2~ 

where the superscript "as" indicates asymptotic values of the corresponding quantities, i.e., 
values outside the Knudsen layer. 

Substituting Eq. (ii) in MSs and Mrstk, integrating over velocities, and summin Z over the 
i-th quantum states, we have 
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as 3nx as as naSxz 3nasa ~//r 
M ~ =  = 2--~' M~uu = 2-~n~' M~asz~ = 2-~-ff~' " " ~  = 0. (12) 

S o l u t i o n  of  t h e  s y s t e m  ( 3 ) - ( 9 )  w i t h  c o n s i d e r a t i o n  of  Eq. (12) and t h e  symmet ry  of t h e  
problem relative to the longitudinal channel axis (~i(x, Cx, Cy, Cz, ai).= ~si(--x -- Cx, Cy, 
Cz, si)) allows us to obtain explicit expressions ~ ~ �9 as ~as ~t.'as In. , sa s . ~o~ ~z , xz, uz" , ~z rst" 

where 

u~ (x) = u~ + ~ x~ - d--/- ' ~ =  (x) = -- x %7, 

qzt'as = - -  }[ -~-  - l - d T  %t ~dP' qzin'as = __ )in _~+dT Xin dPd__z, 

as t6 ~ dp as 1 as as 3 ~Sx, 
Szxx = t5 mPo dz ' szyy : - -  ~ 3zxx, 3zzz ~ ~ 

t5kB {t 4cin 

(13) 

(14) 

�9 cin {i 

t 3q ( 
Z ------ t 

29 o 

<,]} 
t0 c in ) in 2cin /flo Dln] 

(15) 

A = I + ) -  2 + . 

We then have Z : 4 TE in n ~n ' pOD = P~ q = 9~ ~ *  = (2k~/c m) noQz, ~ *  = 8no~/5  ' ~ p  = 8n~D/3. 
Here Z corresponds to some mean number of collisions, necessary for relaxation of the energy 
deviations of the internal degrees of freedom from the translational energy; D in is the internal 
energy diffusion coefficient. 

Following the method of [3-5], we find expressions averaged over the channel area for 

the thermal flux and hydrodynamic velocity. It follows from solution of Eq. (3) that in the 
entire flow region 

~z(X) = --xdp/dz. (16) 

Substituting this value in Eq. ( 4 ) ,  integrating the relationship obtained over x ,  the 
averaging over channel section, we have 

2 t 
m <szxx> + --5- <qz> + P0 <u~) = Lz, (17) 

where 

where 

L l = r n s ~  -'5" + "-5-q~-ff -) + Po ut -2- 120 az'  
--d/2 

Also  a v e r a g i n g  Eqs.  ( 5 ) - ( 7 )  o v e r  t h e  c h a n n e l  s e c t i o n ,  we o b t a i n  

iOc in ~ t 20Po in 4P~ I + 3z--~BZ) <q~> + ~ <q~ > L2, 
3m~] = 

4noC in no 1 2 " 
3 ~  <q~> - T l + ~ <d'> 

15Po 
29 <Szxx> = L4, 

--- L3, 

d M 2d ~]/[Sxz(+)'bk-~mT;p~ L4=-d-2 [4Mzxx~:(-~-) - ~u~(d)  - M z = ~  (} ) ] -  

(17), (18) leads to the results 

(18) 

Solution of Eqs. 
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mP o <u~) = i---L + _ _ Z t L 2  + 
Po i 5Po ~ 

<~> = <q~ > + <q~> = _ 

mkB in L 2ra~ L 
pocZ---~ % a +  t5p~ ~' 

" ~  L~ - -  m~n La. 
noel n 

(19)  

To determine the unknown quantities on the channel wall we use the approximate method 
of [9], We introduce distribution functions for incident and reflected molecules such that 

~i = ~ for c x > 0 and ~i = ~ for c x < 0. For the kinetic boundary condition we assume that 
a portion of the incident molecules are reflected specularly (with no change in the distribu- 
tion over internal states of the molecules), while the other portion is initially adsorbed on 
the wall, and then emitted with+a Maxwell--Boltzmann distribution at temperature T. According 
to Eq. (ii), for the function $~ at x = d/2 we have 

�9 + (c, si, d/2) = 2~l/Zc~a + 2po a~. c~c~ + T p  o ~i/2q~ c~ z _ (20)  

L 5 \  II2 \--1 in.as t 2~1) ~ { as 2 saS ~ t as ~'~, --2)-b2k13~ (po t in)  qz cz~ .s i - - s )+ poimcz~S~xCx+ ~vcu + -ff-s=zCz) cx>O~ 

(:D7 (c, ei, d/2) = (1 - -  • 0 + (--  c~, ~v, % ei, d/2). c~ < O, 

where z is the fraction of molecules experiencing diffuse reflection on the wall, and in place 
of uaS(d/2) we introduce the arbitrary constant a. 

Using Eq. (16) and the definition of Wxz, Eq. (i0), on the channel wall, after calculat- 
ing the corresponding integrals with consideration of Eq. (20) we find 

r# ~ a = - -  13 - ' /~  d (2 -- • ep i t.as __ ~Po szaxsx" ( 21) 
~Po dz 5p ~ qz 

Substituting Eq.(21) in Eq. (20), we obtain the unknown quantities on the channel wall 

appearing in L i. 

According to the thermodynamics of irreversible processes for continuous systems [i0], 

the relationship between the fluxes and gradients can be represented as 

A T - i d r  
<q~> = -- qq -~7 -- A ~ T - ~  d__p 

- d z '  (22)  

<~Zz> = - -  AmqT-2 ~z - -  AraraT-1 d_p 
dz" 

We introduce the dimensionless quantities 

J~ = J,~/mJo = 2~ 1/2 <uz>, Y~ = Jq/kBToJo = 2~ 5~/2 Po 1 <qz>, 

where Jm and Jq are the corresponding averaged mass and heat fluxes per unit cross-sectional 
2 ~- * = -- Lqmkd -- LqqTd. area of the channel; Jo = no/2~ ff �9 Then Jm = --Lmm kd --LmqTd, Jq 

The expressions for the dimensionless kinetic coefficients Lik, obtained by comparison 

of Eqs. (22) and (19), have the form 

i2-~,~! ~ "P~ z ~ + -r- fro  - ~  - L m ~ = ~  + ( 2 - - •  + ~  +~- 

25 V? xt + ~ + 8n ~ -  (xt)~ + ~ cT (xin)~ -~; 
Lmq Lqm ( 2 + •  t 12•176 I~t (Z t 4 r I )  25 kB ] 1 

= = 10kB~l T+25VnkBq2 + -9---~o + Ti-~-zin~in ~-; (24) 

Lqq mL t t2• 2 [(ht)2+ 25 kB (~'rn ] 1 
kB~l 6 25 ] /~  k~'q ~ 12 7 6-`" )2 

- -  7 '  (25) 

w h e r e  6 = Kn-* = poBV~d/q i s  t h e  r e c i p r o c a l  K n u d s e n n u m b e r ;  % = %t + %in. 

The results of a numerical calculation of the coefficients Lmm, Lmq, and Lqq were pre- 
sented in [i] for a planar channel and the case of totally diffuse reflection (~ = i) in the 
reciprocal Knudsen number function 5. An analysis was performed of the dependence of these 

coefficients on the total and translational Aiken factors, defined as 
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TABLE i 
t ] :2,2$ ]:1,96 

6 L m m  -- Lmq 

3 
5 
7 

i0 
20 
30 
40 

1 2 

i,6085 i,7i54 
i,9384 t,9952 
2,2551 2,2988 
2,7367 2,7717 
4,3755 4,4003 
6,031o 6,0580 
7,6923 7,?326 

1 2 
0,1560 0,2054 
0,t368 0,1491 
0,1t09 0,tt70 
0,0846 0,0883 
0,0463 0,048t 
0,0318 0,0330 
0,0242 0,025i 

Lqq 

1 

i,1450 
0,8042 
0,6103 
0,4460 
0,2340 
0,t584 
o,1t98 

i,2230 
0,8218 
0,6178 
0,4494 
0,2348 
0,t588 
0,1190 

TABLE 2 

3 
5 
7 

10 
20 
30 
40 

/=1,96; ]t~2,3i 

0,0980 
0,0721 
0,0504 
0,03t8 
0,0100 
0,0054 
0,0032 

0,1225 
0,0767 
0,0523 
0,0328 
0,0112 
0,0056 
0,0033 

--Lmq/Lmm 

/=1,96;1 ][~2,2~2 I f=1,96;i 

0,Ii97 
0,0747 
0,0509 
0,0318 
0,0109 
0,0054 
0,0032 

0,0970 
0,0706 
0,0492 
0,0309 
0,0106 
0,0053 
0,0031 

0,0952 
0,0688 
0,0479 
0,0300 
0,0103 
0,0051 
0,0030 

]t~2,17 

2 
0,t167 
0,0727 
0,0494 
0,0309 
0,0f06 
0,0052 
O,O03i 

/= ] i  ~ /i~ c in it= htm /in ~ mm 
-~g + c v ' ~c t '  = ~cin" 

The calculations assumed that c t = 3kB/2 , c in = k B. 

For comparison with the results of [I], we can express the quantities ~t, iin xt k in 
appearing in Eqs. (23)-(25) in terms of ft and f with consideration of relationships follow- 

ing from Eqs. (14), (15). 

Table 1 presents a comparison of results of calculating the kinetic coefficients for 
f = 1.96 and ft = 2.24 on the basis of Eqs. (23)-(25) of the present study for the case of 
totally diffuse reflection (z = i) (first column) with the data of [i] (second column) for 
values 6 ~ 3. 

The comparison shows that the coefficient values calculated with Eqs. (23)-(25) prove 
to be somewhat lower, with the difference from the results of [I] not exceeding 3% for Lmm 
and L~_, and from 4 to 10% for Lmq at 6 ~ 5 (Kn ~ 0.2). In the limit of small Knudsen 

~ t~ numbers our resul ~ coincide completely with the data using values of the viscous and ther- 
mal slip coefficients obtained with the aid of the variation method of [ii]. Calculation of 
coefficients for f = 1.92, 1.96, and 2.0 for fixed ft = 2.24 confirm the conclusion of [i] 
as to the weak dependence of these coefficients on total Aiken factor. In addition, as was 
observed in [i], there is a clearly expressed dependence of the coefficient Lmq on transla- 
tional Aiken factor ft for f = c~nst. As is well known, the thermomolecular pressure dif- 
ference effect (appearance of a pressure difference Ap between volumes joined by a thin 
capillary or slit at fixed temperature difference AT) is defined by the expression 

AP/P o Lmq 

AT/T 0 L m m  

Table 2 presents a comparison of values of the ratio--Lmq/Lmm, calculated with the ex- 
pressions of the present study (first column) and in [i] (sedond column) at f = 1.96 for ft = 
2.17, 2.24, 2.31. The observed dependence on ft confirms the possibility of using the ther- 
momolecular pressure difference effect to determine internal energy relaxation times (or the 
factor Z). 

i. 
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VIBRATIONAL AND CHEMICAL KINETICS EQUATIONS IN A COMPLEX GAS MIXTURE 

O. V. Skrebkov UDC 533.6.011.8 

As a result of the development of computer engineering, as well as the achievements of 
experimental and theoretical science on the kinetics of elementary processes in gas systems, 
as a research instrument supplementing, or even replacing completely, the tedium of experi- 
ment in the last two decades, computation of complex mixtures in composition and gasdynamics 
are widespread. In particular, a broad class of problems exists for the analysis of multi- 
component gas mixture flow which requires taking account jointly of the chemical reaction 
kinetics and the vibrational energy exchange processes. On the basis of utilizing simplify- 
ing assumptions in the majority of problems of this kind, the kinetic~equations are formu- 
lated in the form of macroscopic equations for the concentration and the mean vibrational 
energies of the components or separate vibrational degrees of freedom (modes) (see [i, 2], 
e.g.). However, knowledge of the population of the vibrational levels of the separate molecu- 
lar components of the mixture that changes as a result of chemical and vibrational interac- 
tion with a large number of other components can have value, in principle, in solving a num- 
ber of problems (for instance, in modeling working media flows in chemical lasers [3]). Se- 
quential formulation of the kinetic equations in the form of population balance equations for 
the vibrational states of a large number of complex mixture components, without already 
speaking about the extreme tedium of solving them in conjunction with the gasdynamics equa- 
tions, evidently simply have no practical meaning because of the absence of detailed in- 
formation about the quantitative characteristics of a very large number of elementary pro- 

cesses required in this case. 

Such a formulation of the kinetic equations, in which one group of chemical components 
and vibrational states is considered microscopically (i.e., in the form of population bal- 
ance equations) and the other macroscopically (i.e., in the form of equations for the mean 
vibrational energies and concentrations), results in a significant reduction in the vibra- 
tional states taken into account and in their associated elementary processes as compared 
with the sequential microscopic approach. An example is given in this paper of such a com- 
bined formulation of the kinetic equations. Here the subsystem considered microscopically 
is a mixture of diatomic gases, anharmonic oscillators, chemically and vibrationally inter- 
acting mutually and with other polyatomic components comprising the subsystem considered 

macroscopically, in the general case. 
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